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Abstract—In robotics, activity recognition systems can be used
to label large robot-generated activity datasets. It also enables
activity-aware human-robot interactions, and opens ways to self-
learning autonomous robots. The recognition of human activities
from body-worn sensors is also a key paradigm in wearable
computing. In that field, the variability in human activities, sensor
deployment characteristics, and application domains, have led to
the development of best practices and methods to enhance the
robustness of activity recognition systems.

We argue that these methods can benefit many robotics use
cases. We review the activity-recognition principles followed in
the wearable computing community and the methods recently
proposed to improve their robustness. These approaches aim
at the seamless sharing of activity recognition systems across
platforms and application domains. Finally, we outline current
challenges in wearable activity recognition.

Index Terms—Activity recognition, Wearable computing,
Robotics, Machine learning, Domain transfer.

I. INTRODUCTION

Recognizing, sharing and reusing robot behaviors across
multiple robot platforms with varying similarity is challenging.
While descriptions for objects (e.g., CAD models, recogni-
tion models) and environments (e.g., geo coordinates, local
coordinates, feature maps) are largely interchangeable across
different robot hardware, robot task descriptions are typically
highly hardware-dependent. This has prevented the generation
of generic datasets for robot behaviors. However, such datasets
are important and underpin many of the algorithmic advances
e.g. in object recognition [1], [2], [3], or in the creation of
joint world-models [4], [5], [6], [7]. It has also hindered the
progress in the field of robot cognition and robot learning, by
preventing robots to understand and learn from each other’s
actions.

Driven by the rapid progress in mobile sensing and com-
puting, wearable computing has developed powerful methods
for the automatic recognition, categorization, and labeling
of human actions and behaviors from sensor data. Due to
the stringent requirements dictated by user acceptance, these
methods are typically robust to human variability and to
hardware-dependent factors including variability in sensor type
and placement. This makes them a potentially useful tool for
the automatic recognition and labeling of robot behaviors, and

Daniel Roggen and Gerhard Tröster are with the Wearable Computing
Laboratory, Swiss Federal Institute of Technology Zürich. Stéphane Magnenat
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may lead to new opportunities for research in robot cognition
and robot learning.

Annotation of large-scale activity datasets

Due to the ease of systematic data collection from robots
and their potential usefulness for data mining, a future WWW
for robots is likely to include datasets for a large number of
behavioral strategies for different robotic platforms in different
situations. Such datasets may, for example, include sensor
readings for the walking behavior of a humanoid robot on
different terrains, or trajectory information for the grasp behav-
ior of a pick-and-place robot for various target objects. While
individual robots are typically aware of their current behavior
and may hence partially label such data, difficulties in creating
comprehensive naming conventions and precise definitions for
behaviors make such labels too vague to support comparative
performance evaluation. Current methods for human activity
recognition may allow to automatically supplement such labels
by providing systematic and hence comparable categories for
behaviors. In addition, they may be used to automatically
identify underlying motion primitives, further increasing their
precision and potential for data mining.

Human-Robot Interaction (HRI)

Activity recognition supports human-robot interaction [8].
Here we take the viewpoint that human activities are infered
from sensors worn by the user and broadcasted to surrounding
robots. The typical applications are in the domain of assistive
robotics. This form of activity recognition is the one typically
researched in the wearable computing community.

Robot self-learning

Imagine that a human teaches a robot by demonstration
[9] (see figure 1). Using activity recognition, the robot can
supplement its known set of behaviors with an internal model
to recognize different demonstrated activities [10], [11], and
even build a repertoire of sub-goals and obtain a hierarchical
decomposition of its actions [12]. The inferred model can
provide feedback for a self-learning process [13]; for example
using self-perception [14], reinforcement learning [15], or
evolutionary techniques [16]. Such a self-learning process
would allow the robot to develop its own realization of the
motor-commands in light of the goal to reach. In addition, it
may lead to increases in behavioral robustness. For instance,
a damaged robot like NASA’s famous “Spirit” rover may
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Fig. 1. Activity-recognition can be used to self-learn robot motor control. The colored elements are those that undergo learning/adaptation. In phase 1, an
activity recognition system learns to recognize the activities demonstrated by the user using the robot’s sensors. In phase 2, activity recognition guides the
adaptation of the robot controller. This allows the robot to discover or improve its motor skills. In phase 3, the recognition system is transfered to a new robot
that has a compatible perception subsystem but different actuators. The new robot self-learns the same motor skills as the previous robot.

not have been pre-programmed to cope with all modes of
failures. However, should it be able to perceive its own actions,
activity recognition could provide it with insight into its
actual behavioral performance in spite of the damage. Using
continuous self-learning, this may allow it to develop a novel,
effective motor-control program, overcoming the problem.

Robot self-learning can also be applied across platforms.
Rather than demonstrating all activities to all robots, activity
recognition may allow robots to learn from each other. Given
compatible perception systems, robots can directly share and
reuse activity recognition systems across platforms. Differ-
ences such as parametrizations of motor control programs
can then be self-learnt. While such direct sharing of activity
recognition is only possible for identical perception systems,
it is noteworthy that efforts in activity recognition which
we review in this paper aim at developing methods that are
robust across different perception systems [17]. In particular
a reduced set of sensors may nevertheless allow to recognize
a common subset of activities [18]. Since many of today’s
robots share common sensors like cameras or a laser scanners,
this potentially allows reuse of activity recognition programs
across platforms. Moreover, a robot capable of recognizing an
activity using some of its sensors can learn the information
content with respect to that activity in its other sensors [19].
This could be used to learn to use a new sensor. This could
also lead to automatic calibration when replacing robot parts,
and to transparent sensor substitution in case of failures. In
the context of networked robots, activity recognition may help
robots identify semantic relevance of their peer’s activities,
enhancing collaboration in heterogeneous robot teams.

Contribution

Activity recognition is a key principle underlying wearable
computing. Body-worn sensor data is interpreted to infer the
user’s activities and realize activity-aware application [20],
[21]. One realizes the direct parallel to robotics: the mechani-
cal body is replaced by a human body, and wearable systems
and autonomous mobile robots alike sense and interpret their
environment from a first person perspective.

Activity recognition in wearable computing is challenging
due to a high variability along multiple dimensions: human
action-motor strategies are highly variable; the deployment of

sensors at calibrated locations is challenging; the environments
where systems are deployed are usually open-ended. This has
led the wearable computing community to enhance existing,
and investigate new, recognition methods that cope with such
variability. This paper aims to present the principles developed
for wearable activity recognition to the robotics community,
emphasizing the issue of transfer and sharing of activity
recognition systems between platforms.

We introduce wearable computing in section II. We give an
overview of the approaches used for activity recognition in
wearable computing along sensors and processing techniques
in section III. In section IV we categorize and illustrate a few
of the most relevant approaches recently proposed to share
activity recognition systems across platforms and application
domains. We conclude summarizing the key insights and
ongoing research challenges, and indicating resources where
further information about wearable activity recognition can be
found in section V.

II. WHAT IS WEARABLE COMPUTING?

Wearable computing, as originally presented by Mann in
1996, emphasized a shift in computing paradigm [22]. Com-
puters would no longer be machines separate from the per-
sons using them. Instead, they would become an unobtrusive
extension of our very bodies, providing us with additional
ubiquitous sensing, feedback and computational capabilities.
As implied by its name, wearable computing never considered
implanting sensors or chips into the body. Rather, it empha-
sizes the view that clothing, which has becomes an extension
of our natural skin, would be the substrate that technology
could disappear into (figure 2). The prevalence of mobile
phones now offers an additional vector for on-body sensing
and computing [23].

Mann [24] and Starner [25] were among the first to show
that complex contextual information can be obtained by in-
terpreting on-body sensor data and that this would lead to
novel adaptive applications. A wearable system can perceive
activities, here defined to include both gestures and behaviors,
from a “first person perspective”. This leads to new forms of
applications known as activity-based computing or interaction-
based computing [20], [21]. Such applications can offer infor-
mation or assistance proactively based on the user’s situation,
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Fig. 2. The vision of wearable computing in the mid 1990s (from [22]). The
system comprises a head-worn camera, a see-through head-up display in the
goggles, an Internet connection, and an on-body computer.

as well as support explicit interaction in unobtrusive ways
through natural gestures or body movements.

A few application domains include e.g.: industrial assistance
[26], gestural inputs for human-computer interaction [27], be-
havior monitoring for personalized healthcare [28], movement
analysis for sports assistants [29].

The kind of activities or gestures that are recognized are
wide ranging, but also depend on the available sensors. Ex-
amples include:

• the recognition of complex manipulative gestures per-
formed by industrial workers on a car body to check
its functioning [30], with gestures including checking
the hood latch mechanism, checking the seat sliding
mechanism, and checking the spacing between doors and
car body by using sensors including inertial measurement
units (see also figure 5);

• the recognition of seven modes of locomotion (sit, stand,
walk, walk upstairs, walk downstairs, ride elevator up,
ride elevator down) from a single acceleration sensor
[31];

• the recognition of the assembly steps of a shelf or a
mirror from acceleration sensors [32], and the recogni-
tion of nine wood-making activities (hammering, sawing,
filing, drilling, sanding, grinding, screwing, using a vise,
operating a drawer) [33], using accelerometers and mi-
crophones;

• the recognition of five hand gestures (square, cross, circle,
fish, bend) for human-computer interaction (HCI) from a
single accelerometer [27];

• the recognition of sports activities in a fitness room by
intertial sensors [34].

Activity recognition in wearable computing shares a number
of similarities to mobile robotics:

• sensing is performed on the human or robot body from
a “first person” perspective;

• recognition of activities is directly relevant for the appli-
cation at hand;

• continuous recognition of activities is essential to allow
for adaptation of the system’s behavior;

• activities typically have a clear semantic description (e.g.
reaching, grasping).

III. WEARABLE ACTIVITY RECOGNITION

Activity and gesture recognition is generally tackled as a
problem of learning by demonstration [35], [33]. The user is
instrumented with the selected sensors and put into a situation
where he performs the activities and gestures of interest. The
sensor data are acquired with ground-truth annotations de-
scribing what the user performs or experiences. The resulting
dataset is used to train the recognition system and test its
performance. The training process consists of identifying the
mapping between the user’s activities or gestures and the
corresponding sensor signals.

Some terminology commonly used in wearable activity
recognition differs from the one used in robotics:

• annotation or labelling: this is the process by which the
experimenter manually provides ground-truth information
about the activities of the subject, generally when collect-
ing an activity dataset;

• recognition or spotting: this is the actual machine iden-
tification of an activitiy in the sensor stream. Activities
are said to be “recognized” or “spotted”.

A. Sensors for activity recognition

Sensors are used to acquire signals related to the user’s ac-
tivities or gestures. User comfort is paramount. Thus, sensors
must be small, unobtrusive and ideally invisible to the outside.
The sensors are selected according to a tradeoff between
wearability, computational needs, power usage, communica-
tion requirements, and information content for the activities
and contexts of interest. For instance cameras are currently
seldomly used in wearable computing due to the computational
requirements for video analysis. Instead sensor modalities that
are computationally lighter are prefered.

Common sensor modalities are body-worn accelerometers
and inertial measurement units (IMUs). Accelerometers are
extremely small and low-power. IMUs contain accelerome-
ters, magnetometers and gyroscopes and allow to sense the
orientation of the device with respect to a reference. IMUs are
typically placed on each body segment and allow to reconstruct
a body model of the user. On-body microphones are also
successfully used for activity recognition, as many human
activities generate characteristic sounds (e.g. using a coffee
machine, brushing teeth) [33]. Typical sensor modalities are
listed in [36].

Clothing is a major platform to deploy sensors on-body
unobtrusively. For instance, IMUs can be integrated in a
worker’s jacket (see figure 3). There are also ongoing efforts
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to develop sensorized textile fibers, which allows for truly
unobtrusive garment-integrated sensing [37].

Nowadays the trend goes towards an increased use of
multiple multimodal sensors, as this tends to increase recog-
nition performance (see e.g. [30]). Wearable systems are also
complemented by object-integrated and ambient sensors. We
recently coined the term opportunistic activity recognition in
the EU FP7 project OPPORTUNITY [17]. It describes systems
that make use of sensors that just happen to be available,
rather than requiring specific sensor deployment. This will
further address comfort issues and emphasizes the need for
new machine learning techniques to share activity recognition
systems across different sensor domains to reach this goal [17].

Fig. 3. This MotionJacket allows the unobtrusive capture of the upper-body
movements using seven IMUs placed on each body segments. (b). The IMUs
allow to reconstruct the user’s instantaneous posture (a). From [30].

B. Activity recognition chain

We refer to the activity recognition chain (ARC) as a set of
processing principles commonly followed by most researchers
to infer human activities from the raw sensor data [33], [35],
[38], [39] (see figure 4).

The sub-symbolic processing maps the low-level sensor
data (e.g. body-limb acceleration) to semantically meaningful
action primitives (e.g. grasp). Meaning is attributed to the
sensor data streams by “comparing” them to known activity
prototypes. This is realized by streaming signal processing
and machine learning techniques. The outcome of the sub-
symbolic processing are events indicating the occurrance of
action primitives. The ARC terminates at this stage when the
activities of interest consist of simple gestures, for instance
used for gestural interfaces [27].

The symbolic processing maps sequences of action prim-
itives (e.g. grasping, cutting) to higher-level activities (e.g.
cooking). This may be realized by reasoning, expert knowl-
edge, or by statistical approaches applied to the occurrences
of action primitives.

Sub-symbolic processing ought to be robust to the large
observed variability in sensor-signal to activity-class mapping
due to human behaviors or sensor deployments. In wearable
computing, sub-symbolic processing is usually co-optimized
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Fig. 5. Three activities of a car assembly scenario are shown: checking the
engine hood (C3), checking the gap spacing between doors and car body (C4),
and checking the opening of the front door (C5). The data of an acceleration
sensor placed on the right wrist is shown for three repetitions (G1-G3) of
the activity (center). Note the variability in the gesture execution length and
signal shape. After feature extraction, the sensor signals are projected into
a feature space (right). Note that some activities are well separated, lending
them to robust classification (e.g. C10, C1) while others overlap as they are
more similar (e.g. C5, C6, bottom right). During training of the recognition
chain, the selection of pre-processing steps and features aims at increasing
the separation between the activity classes. Sensor data from [18].

with sensor selection to maximize comfort and recognition
performance. The sub-symbolic processing stages are usually
[33], [35], [38] (see fig. 4):

• sensor-data acquisition: A stream of sensor samples S
is obtained;

• signal pre-processing: The sensor data stream is pre-
processed. Typical transformations are calibration, de-
noising, or sensor level data fusion;

• segmentation of the data stream. The data stream is
segmented into sections W that are likely to contain a
gesture; Segments are identified by their start and end
time in the data stream. A common type of segmentation
technique is the sliding window, usually for periodic
movements, or energy-based or rest-position based seg-
mentation, when the user performs isolated gestures or
returns to a rest position between gestures;

• feature extraction: Features are computed on the identi-
fied segments to reduce their dimensionality, yielding a
feature vector X;

• classification: A classifier, trained at design-time, maps
the feature vector into a pre-defined set of output classes
(activities, gestures): X → c, p. Usually a ranked likeli-
hood of the output classes is obtained which can be used
for decision fusion;

• decision fusion: Combines multiple information sources
(multiple sensors, or multiple classifiers operating on one
sensor) into a decision about the activity that occurred;

• “null-class” rejection: In cases where the confidence in
the classification result is too low, the system may discard
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Fig. 4. Processing steps used to infer activities from on-body sensors. The raw sensor data is mapped to the occurrence of action primitive (events) with
signal processing and machine learning techniques. Here 5 sensors deliver data. Data fusion is illustrated at the feature, classifier and decision level. Symbolic
processing infers higher-level activities from the occurrence of action primitives usually with reasoning or statistical approaches.

the classified activity based on its likelihood. At this
stage, the outcome is the detection of an action primitive
Ai with likelihood pi at time ti.

Before operation, the classifiers used in the ARC are trained
using a training set containing data instances (feature vectors)
X and the corresponding activity label γ. Other parameters,
such as the thresholds to segment activities or reject the
null class, or the set of features, are also optimized prior to
operation.

Classifiers commonly used for activity recognition have
been reviewed in [38] together with typical features derived
from acceleration signals. If the features corresponding to
activities form clusters in the feature space (see figure 5), then
the classifiers that are typically used include Support Vector
Machines [40], decision trees, k-Nearest Neighbor or Naive
Bayes classifiers [41]. This is usually the case with isolated
gestures and when static postures are recognized with features
such as limb angles. It is also the case with periodic activities
when frequency domain features are used (e.g. walking leads
to energy in specific frequency bands). When the temporal
unfolding of the gesture must be analyzed, such as with
sporadic gestures, approaches such as Dynamic Time Warping
[42] or hidden Markov models (HMMs) [25] are used. Other
methods include neural networks [43] or fuzzy systems [44].

In figure 5 we illustrate a set of activities and the corre-
sponding sensor signals. With simple statistical features, the
sensor signals can be projected in a feature space where the
activities form clusters suitable for classification.

Symbolic level processing is usually event-driven, with
events corresponding to activity occurrences. Higher-level ac-
tivity models are thus built on event occurrences instead of raw
sensor data. Approaches typically used for symbolic process-
ing include ontological and statistical reasoning, probabilistic
and temporal logic, Bayesian networks, fuzzy logic, Dempster-
Shafer and hybrid approaches [45], [46], [47]. Modeling and
reasoning methods used for human context inference are
further reviewed in [39].

High-level models are usually also derived from data record-

ings. Alternative approaches include the use of expert knowl-
edge. For instance in [30] we relied on a documented step-by-
step guide for industry workers to detect a high-level task - the
assembly of a car lamp - from a sequence of action primitives.

Few work has attempted to use expert knowledge to detect
complex gestures from raw sensor data, such as accelerometer
readings [48]. The main challenge faced is the large inter- and
intra-user variability which is better captured by learning by
demonstration approaches.

IV. SHARING ACTIVITY-RECOGNITION CHAINS
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Fig. 6. Representation of the level at which a common representation is
assumed to share a recognition system between users (platforms) or domains.

Human activity recognition in wearable computing is chal-
lenging due to a large variability in the mapping of sensor
signals to activity classes. This variability has multiple origins:

• semantically identical action primitives (e.g. drinking
from a glass) can be executed in a large number of
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ways (e.g. grasp with the left or right hand, while seated,
standing or walking, at various speeds). This is referred to
as intra-user variability. These variations come from per-
sonal preferences. Moreover, aging, injuries, or increased
proficiency at a task also lead to variability. Figure 5
illustrates intra-user variability;

• although different persons may be considered as “robots
of identical make” in practice there is an even higher
variability in action-motor strategies between users (inter-
user variability) than for a single user. Personal prefer-
ences, differences in expertise, body proportions or fitness
level explain this variability;

• the placement of the sensors on body cannot be done
with a high precision, especially when the users deploy
the sensors themselves. For comfort reasons the user must
be able to detach sensors when not needed (e.g. during
sleep) and reattach them when needed, or to displace
them when incomfortable. The placement of sensors in
loose-fitting clothing is affected by the deformation of the
garment depending on the user’s activities and posture
[49]. Figure 7 illustrates the effect of sensor placement
on the projection of sensor data into the feature space;

• abstracting the specific environment in which the system
can recognize activities is important to ensure cost-
effective deployment on a large scale. Thus, activity
recognition methods should work for a generic class of
problems (e.g. in “any smart home”) rather than a specific
instance of the problem class (e.g. a specific smart home);

• To further increase unobtrusiveness, we argue in the EU
FP7 FET-Open project OPPORTUNITY1 to use oppor-
tunistically discovered sensors for activity recognition
[17]. Thus, the available sensor configuration depends
on the sensorized objects users take with themselves, on
the smart-clothing they wear, and on the environment
in which they are located. For each sensor kind and
placement there is a different sensor-signal to activity-
class mapping that an opportunistic activity recognition
system should be able to abstract.

The wearable computing community has developed best
practices and novel methods to deal with some forms of
variability. In the following subsections we present a selection
of methods developed by various groups and ours. In order to
share an ARC, there must be a common representation at some
stage in the recognition chain. We organize the methods along
the level at which methods assume the common representation.
We describe methods operating at the sensor-level, at the
feature level, at the classifier-level, and at the reasoning level
(see figure 6).

A. Sensor-level sharing

This level focses on training an ARC on the first platform
and re-using it on the second platform. This assumes that
the sensor signal to activity class mappings are statistically
identical on the two platforms. This is usually not the case
in practice due to slight variations in sensor placement and

1http://www.opportunity-project.org

in human action-motor strategies. Training an ARC on one
system is referred to as a user-specific system, and it is known
to show degraded performance when deployed to another
user [33]. Training user-specific ARCs is costly and thus not
adequate for the deployment of wearable system on a large
scale.

The best practice to realize an ARC that generalizes to new
situations consists in training it on a dataset containing the
variability likely to be seen when the system is deployed.
By collecting a dataset from multiple user the ARC can be
trained to be user-independent [33]. By collecting a dataset
comprising multiple on-body sensor positions the ARC can
be trained to be sensor-placement independent [31].

A similar approach in learning by demonstration in robotics
could lead to platform independent activity recognition models
by demonstrating a task to multiple platforms.

The previous approach requires to foresee all the variations
likely to be encountered at run-time. Thus, we proposed
an unsupervised self-calibration approach that removes this
requirement [50]. The self-calibration approach operates as
follows:

• the ARC continuously operates and recognizes the occur-
rence of activities/gestures;

• upon detection of an activity/gesture, the corresponding
sensor data is stored as training data;

• the classifiers are re-trained including this new training
data, using an incremental learning algorithm.

Thus, the activity models are optimized upon each activity
instance to better model that activity. We demonstrated the
benefits of this approach on the recognition of 6 fitness
activities (see figure 7) when the position of sensors on the
body are displaced between the training and testing phases.
The figure illustrates the sensor placement, and the mapping
of the activiy classes in the feature space. During adaptation,
the method tracks the displacement of the activity clusters in
the feature space. The assumptions underlying the approach
are that activities form distinct clusters in the feature space,
and that the speed of adaptation is matched to the speed at
which clusters shift. In [50] we argue that this approach may
also be applied to cope with slight changes in action-motor
strategies, due e.g. to ageing or change of user.

A translation to robotics of these principles may allow
activity models to adapt when sensors or actuators deteriorate.

B. Feature-level sharing

At this level, the ARC devised for the first platform is trans-
lated to the second platform from the feature level onwards.
Thus, the ARC must abstract from the specific sensors. The
use case for sharing ARCs at this level include systems where
the sensor modalities on the two platforms do not coincide,
or show large on-body displacement, for which a placement-
independent ARC cannot be envisonned.

Kunze et al. have explored in [34], [51] approaches to
elevate the processing of the activity recognition chain to
“abstract” features. They show that features that are robust
to on-body displacement can be designed using body models
and fusing multiple modalities, such as accelerometer and
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Fig. 7. a) Three of the 6 fitness activities performed by the subject to assess
unsupervised classifier self calibration (flick kicks, knee lifts, and jumping
jacks are depicted). Ten on-body sensors at regular interval are visible on the
subject’s left leg. b) Distribution of the 6 fitness activity classes in the feature
space. c) Adaptation dynamics of the nearest class center classifier trained on
one sensor position and deployed on another position.

gyroscope modalities [34]. They also show that a specific
sensor modality (magnetic field sensor) can be replaced by
another specific modality (gyroscope) [51].

In [17] we argue that other such transformation may be
feasible, such as performing activity recognition on a 3D
body model (see figure 3 (a)), which can be obtained from
modalities such as IMUs, fitting a body model in video
sequences, or inferring limb angles using clothing integrated
elongation sensors [52].

A hybrid approach between sensor-level and feature level
sharing was further proposed by Kunze et al. who demon-
strated that sensors can autonomously self-characterize their
on-body placement [53] and orientation [54] using machine
learning techniques. They propose to use on-body sensor
placement self-characterization as a way to select, among a
number of pre-programmed ARCs, the one most suited to the
detected sensor placement.

Similarly in robotics data from different sensors can be
converted into identical abstract representations. For instance
3D point clouds can be measured by stereovision or laser range
finder.

C. Classifier-level sharing

Transfer learning allows to translate a classification problem
from one feature space to another [55] and was used to
transfer perceptual categories across modalities in biological
and artificial systems [56]. Conceptually, transfer learning may
thus be used to translate the capability to recognize activities
from one platform to another without enforcing a similar input

space (i.e. sensors, features). Thus, the transfer does not affect
higher-level reasoning.

Practical principles allowing a system A to confer activity
recognition capabilities to another system B are outlined in
[19]. Each system A and B is composed of a set of sensors
SA, SB , ARCs ARCA, ARCB , and a unified communication
protocol. The process of transfer learning works as follows
(see figure 8):

• the user employs an activity-aware system A with ARCA

and sensor set SA. For instance: a set of instrumented
drawers capable of reporting which one is being opened
or closed, in a storage management scenario;

• a new system is deployed in the user’s personal area
network comprising a set of unknown new sensors SB

(on body and/or in the user’s surroundings) and a yet
untrained ARCB . For instance, the user wears a new
sensorized wristband with integrated acceleration sensor;

• as the user performs activities, the ARCA recognizes
them and broadcasts this information;

• the new system B receives the class labels of the rec-
ognized activities. The ARCB incrementally learns the
mapping between the signals of the sensor set SB and
the activity classes;

• eventually, the system A can be removed. The activity
recognition capability is now entirely provided by the
system B.

The underlying assumptions are that the two systems coexist
for long enough to operate the transfer learning. In figure 8
we show that, as the user interacts with the set of drawers, the
body-worn system incrementally learns to recognize drawer
activities.

In robotics, this sharing approach may be used to allow
robots with different sensory inputs to learn to recognize
semantically identical activities, or to learn how to use a new
sensor when robot parts are upgraded, thus easing program-
ming.

D. Symbolic-level sharing

The reasoning program to infer higher-level activities from
spotted action primitives is shared between platforms. As the
environment in which the two platforms operate may lead
to the detection of semantically different action primitives, a
direct transfer of the reasoning is not always possible. Carrying
out a prior concept matching can address this.

For instance, to reason about the activity of a user, one needs
first to know in which room he is located. One environment
may have a sensor allowing to detect the action primitive
“room door activated”. Another environment may have a
proximity infrared sensor allowing to detect “movement in the
room”. The interpretation of the sensor data requires different
features and classifiers in each case. However, although the
classifiers deliver semantically different action primitives, they
may both be found to indicate the presence of a user in a room.
Thus, higher-level reasoning may remain identical if these two
different concepts are first matched.

Van Kasteren et al. extended transfer learning methods
to operate on time series resulting from the activation of
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Fig. 8. a) An ambient system A consists of 13 drawers equipped with
acceleration sensors and an ARC capable of recognizing which drawer is being
opened or closed. A wearable system B consists of three on-body acceleration
sensors. Its ARC is initially untrained. As the user interacts with the drawers,
the system A provides activity labels to the system B, that incrementally
learns to recognize opening and closing gestures. b) The activity recognition
confusion matrix of system B before and after transfer learning. It indicates
for each user activity (rows, here opening or closing a drawer) how the ARC
classifies the activity. The closer to a diagonal distribution, the higher the
recognition accuracy.

simple binary sensors [57]. They applied this method to
transfer behavior recognition capabilities from one smart home
kind to another smart home kind with different and a-priori
unknown number and placement of sensors. The system
first automatically finds how sensor activations in different
environments relate to identical higher-level concepts using
statistical approaches. A recognition system can also learn
internal hierarchical representation of activities or “concepts”
[58], upon which reasoning is performed. Advances in merging
concepts in ontologies [59], [60] supports the transfer of activ-
ity recognition reasoning across different conceptual spaces.

In robotics these principles may allow robots to exchange
the knowledge they have individually gained about the world.
This may be especially relevant when principles of au-
tonomous mental development are used, as robots can develop
distinct world representations according to their capabilities.

E. Other approaches

Some approaches do not fit in the taxonomy above. Schiele
et al. proposed a form of transfer learning to reuse action prim-
itives across different but related application domains. Action
primitive spotting (hammering, screwing, cutting) was trained
on the dataset of a shelf-assembly task. These primitives were
re-used as-is to detect higher-level steps of a mirror-assembly
task, thus reducing considerably the amount of training data
needed for the new task [32]. Further result support this
approach [61].

Most of the approaches described previously attempt to
reduce or eliminate the need for training data for activity
recognition on the new platform. Beigl et al. proposed to
“crowd-source” the acquisition of training data. They ad-
dressed the issues related to shared data labeling by developing

a framework suitable for end-users operating on a mobile
phone [62]. Semi-supervised learning allows to combine a
limited number of labeled data with a large amount of unla-
beled data to train classifiers. It was successfully used to train
activity recognition systems using only sparse activity labels
[63]. Recent trends seek further reduction in the data collection
efforts by automatically generating activity recognition models
from on-line sources by data mining [64].

Calatroni et al. argue that many existing sensors can be
repurposed for activity recognition, even though they were
initially deployed for other uses [65]. They show, for instance,
how reed switches placed in windows for security purposes can
be used to infer standing or walking, by means of assumptions
about human behavior when interacting with the instrumented
object. They indicate several other sensors and behavioral as-
sumptions that allow to obtain sporadic information or “labels”
about the modes of locomotion of the user or his gestures.
They suggest to incrementally train the body-worn recognition
system, whenever such labels are obtained, with the transfer
learning method described above. Eventually the wearable
system becomes capable of activity recognition even when the
user does not interact with an instrumented object. Since this
process can be continuous, the system can perform activity
recognition with many different and unforeseen combinations
of on-body sensors, as long as they provide discriminative
signals.

V. CONCLUSION AND OUTLOOK

Activity recognition enables a WWW of robots by providing
a tool to label large robot-generated activity datasets, by en-
abling activity-aware human-robot interaction (HRI) in hybrid
teams, and by opening the way to self-learning autonomous
robots capable of monitoring their own proficiency at a task.

Human activity recognition has been a major object of
research in the wearable computing community since the
mid-nineties. We summarized the methods developed in the
community along the activity recognition chain - a set of pro-
cessing principles followed in most wearable activity recog-
nition research. Since human activities are highly variable we
reported some of the recent advances to enhance the robustness
of activity recognition systems when they are shared among
different users or deployed in different application domains.
Many methods can potentially be beneficial to robotic use
cases.

Human activity recognition from on-body sensors is far
from a solved problem. Some of the continuing challenges
include:

• finding more efficient sensor modalities for activity recog-
nition. They should satisfy multiple requirements: mini-
mize obtrusiveness, be highly discriminative of the activ-
ities of interest, and minimize subsequent computational
complexity;

• spotting rare events and short activities in large stream
of data. This is still a challenging segmentation and null-
class rejection problem;

• despite recent advances surveyed in this paper, coping
with human motion variability remains an open area of
research;
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• deploying activity recognition to new problem domains
without an expensive training phase is still elusive;

• shared reference activity recognition dataset are important
for benchmarking purposes. We reviewed a few activ-
ity recognition dataset and proposed a new benchmark
dataset in [36];

• building and updating the state of a world-model ac-
cording to the user’s actions. For instance when a user
displaces a cup, this changes the meaning of a “grasp”
gesture performed at the prior location of the cup. Most
current approaches assume stateless world models;

Other challenges relate to the use of activity recognition
systems in robotics. The annotation of large-scale datasets or
the recognition of human activities for HRI must take into
account that machine recognition of activities is not perfectly
accurate. Thus, probability distributions on the recognized
activity classes needs to be taken into account for further
processing, for instance in a Bayesian framework.

Using activity recognition in a robotic self-learning
paradigm builds on the assumption that it is preferable to
translate an activity recognition system between robots, rather
than a motor program. Translation between robots of identi-
cal make is relatively straightforward and may allow robots
to learn new motor strategies when actuators are damaged.
Translation across heterogeneous platforms assumes a greater
invariance in the activity recognition system than in the motor
program. The methods presented in this paper show how
to approach this issue. The coming years will see whether
self-learning in heterogeneous platforms driven by a common
activity recognition system can be reliably achieved.

We invite the interested readers to look for further in-
formation on activity recognition in wearable and pervasive
computing in the following conference proceedings: Int. Symp.
on Wearable Computers (ISWC), Int. Conf. on Pervasive
Computing (Pervasive), Int. Conf. on Ubiquitous Computing.
The following journals also cover the topic: IEEE Pervasive
Computing Magazine, Personal and Ubiquitous Computing
(Springer), and Pervasive and Mobile Computing (Elsevier).
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cells: Towards lifelong learning in activity recognition systems,” in
Proceedings of the 4th European Conference on Smart Sensing and
Context (EuroSSC). Springer, 2009.

[20] N. Davies, D. P. Siewiorek, and R. Sukthankar, “Special issue: Activity-
based computing,” IEEE Pervasive Computing, vol. 7, no. 2, pp. 20–21,
2008.

[21] P. Lukowicz, O. Amft, D. Roggen, and J. Cheng, “On-body sensing:
From gesture-based input to activity-driven interaction,” IEEE Com-
puter, vol. 43, no. 10, pp. 92–96, 2010.

[22] S. Mann, “Smart clothing: The shift to wearable computing,” Commu-
nications of the ACM, no. 8, pp. 23–34, 1996.

[23] R. Want, “When cell phones become computers,” IEEE Pervasive
Computing, vol. 8, no. 2, pp. 2–5, 2009.

[24] S. Mann, “Humanistic computing: “wearcom” as a new framework and
application for intelligent signal processing,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2123–2151, 1998.

[25] T. Starner, J. Weaver, and A. Pentland, “Real-time American sign lan-
guage recognition using desk and wearable computer based video,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
no. 12, pp. 1371–1375, 1998.

[26] V. Stanford, “Wearable computing goes live in industry,” IEEE Pervasive
Computing Magazine, vol. 1, no. 4, pp. 14–19, 2002.



IEEE RAM - SPECIAL ISSUE TOWARDS A WWW FOR ROBOTS 10
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